Е.Г.Ледовская, канд. техн. наук Е.А. Светличный, Р.В. Тарасов, Л.Н.Ледовская, А.В.Пилипенко, С.В. Мошта (ННЦ «Харьковский физико-технический институт», г. Харьков, Украина)

Получение кордиерито-цирконовой керамики и изучение ее свойств

Введение

В ННЦ ХФТИ систематически проводятся исследования по получению керамических и стеклокерамических материалов для иммобилизации радиоактивных отходов [1—3].

Одним из перспективных материалов для применения в данной области является высокоплотная керамика на основе кордиерита. Такая керамика характеризуется высоким уровнем физикохимических и механических свойств, обладает высокой стойкостью к термическим нагрузкам, имеет низкий термический коэффициент линейного расширения, высокие диэлектрические свойства, благодаря чему и получает большое распространение [4; 5].

Существенного улучшения свойств керамики на основе кордиерита достигают путем введения различных модифицирующих добавок. Наиболее прочные композиты могут быть получены в смесях кордиерита с цирконом [6; 7].

Добавление диоксида циркония сужает интервал существования кварцеподобных структур кордиерита, а в смеси с диоксидом кремния благоприятствует образованию циркона $ZrSiO_4$, характеризующегося также сравнительно низким TKЛР и близкими физико-химическими свойствами к кордиериту. Введение в кордиеритовые массы ZrO_2 в количестве 5-15% способствует расширению интервала спекания керамики [5].

Изделия из кордиеритовой керамики с добавками диоксида циркония возможно получить достаточно просто с применением традиционной технологии перемешивания высокодисперсных порошков SiO_2 , MgO, Al_2O_3 и ZrO_2 в заданном соотношении с последующим формированием и спеканием. Способ введения добавки ZrO_2 по этой технологии не нуждается в дорогом и сложном оборудовании.

В технологии производства особоплотной керамики заслуживает внимания способ введения модифицирующих добавок

из раствора солей, в частности, путем насыщения основного компонента водным раствором соли и последующей термообработки. В связи с этим является весьма перспективным применение способа насыщения кордиеритовой смеси водным раствором соли циркония. Поскольку из таких солей хорошо растворимыми являются оксихлорид и оксинитрат циркония (соответственно $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$ и $\text{ZrO(NO}_3)_2 \cdot 6\text{H}_2\text{O}$), их применение является наиболее перспективным. Использование $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$ в данном случае является более рациональным, потому что содержимое диоксида циркония в ней выше, чем в $\text{ZrO(NO}_3)_2 \cdot 6\text{H}_2\text{O}$. Таким образом, использование способа введения добавки ZrO_2 путем насыщения кордиеритовой смеси водным раствором $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$ со следующей термообработкой является также экономически целесообразным.

Целью работы является разработка эффективного способа получения высокоплотной кордиерито-цирконовой керамики.

Экспериментальная часть

В качестве основных исходных материалов использовали химически чистые оксиды Al_2O_3 , MgO и SiO_2 . В качестве добавки применяли оксихлорид циркония ($ZrOCl_2 \cdot 8H_2O$) и моноклинный диоксид циркония марки ЦРО 1.

Из основных материалов готовили смеси следующих составов: чистый кордиерит (1), кордиеритовая смесь с добавкой 5 % мас. $\rm ZrO_2$ (2), кордиеритовая смесь с $\rm 10$ % $\rm ZrO_2$ (3), кордиеритовая смесь с $\rm 15$ % $\rm ZrO_2$ (4). Также из основных материалов готовили смесь, которую насыщали водным раствором оксихлорида циркония (из расчета получения 5 %, $\rm 10$ % и 15 % мас. $\rm ZrO_2$): смесь — с 5 % $\rm ZrO_2$ (5); смесь — с 10 % $\rm ZrO_2$ (6); смесь — с 15 % $\rm ZrO_2$ (7).

Смешение и помол материалов проводили в планетарной мельнице «Pulverisette 6» (ФРГ). Подготовленную смесь обжигали для синтеза в муфельной печи Nabertherm P310 (ФРГ) при температуре $1000\,^{\circ}$ С 1 ч.

Для проведения реологических исследований в лабораторном инжекторе готовили шликера путем добавления к измельченным материалам парафина, олеиновой кислоты и Castament FS 10.

Изучение реологических свойств шликеров проводили согласно [8] на цифровом вискозиметре Брукфильда LVDV-II+ Pro.

Формование образцов осуществляли методом литья под давлением термопластичных шликеров.

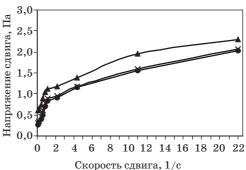
Сформованные образцы подвергали термообработке в электропечи при температуре $900\,^{\circ}\mathrm{C}$ для удаления связки, а затем окончательное спекание образцов проводили в интервале температур $1300-1400\,^{\circ}\mathrm{C}$.

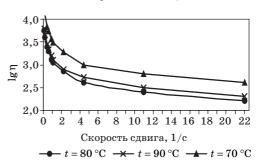
Определение открытой пористости и кажущейся плотности осуществляли стандартными методами согласно ГОСТ 473.4-81.

Проведение исследований механической прочности при сжатии выполняли по методу диаметрального сжатия [9].

Фазовый состав материалов после термообработки исследовали методом рентгеноструктурного анализа (ДРОН-1,5, $\mathrm{Cu}K_{\alpha}$ с никелевым фильтром).

Для определения термостойкости использовали стандарт EN 820-3:2004, согласно которому термостойкость характеризовали перепадом температур ΔT , при котором происходит появление трещин на образцах.


Исследование микроструктуры полученных керамических образцов проводили на сканирующем электронном микроскопе JEM-7001 F.


Имитационное облучение образцов проводили на линейном ускорителе электронов КУТ-1 в поле облучения с энергией γ -квантов $\sim 5~{\rm MeB}$ ($E_{\rm max}=10~{\rm MeB}$) до дозы 1 МГр. Испытания проводили до максимальной дозы облучения $\sim 1~{\rm M\Gamma p}$.

Результаты и их обсуждение

На рис. 1 показана зависимость напряжения сдвига и логарифма вязкости шликеров от скорости сдвига при разных температурах.

Как видно из рис. 1, наибольшее значение вязкости при всех ис-

Puc. 1. Зависимость напряжения сдвига и логарифма вязкости шликеров от скорости сдвига при разных температурах

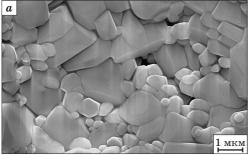
следованных скоростях сдвига имеют шликера с температурой $70\,^{\circ}\mathrm{C}$. С увеличением температуры в шликерах с $70\,$ до $80\,^{\circ}\mathrm{C}$ установлено существенное снижение вязкости. Дальнейшее увеличение температуры до $90\,^{\circ}\mathrm{C}$ значительно не влияет на вязкость шликеров, поэтому температура шликеров $80\,^{\circ}\mathrm{C}$ является оптимальной.

Шликера характеризуются подобной склонностью к структурообразованию. Наибольшую способность к структурообразованию имеют шликера с температурой $70\,^{\circ}\mathrm{C}$, их значения напряжения сдвига наибольшие при всех скоростях сдвига. Увеличение температуры в шликерах с 70 до $80\,^{\circ}\mathrm{C}$ приводит к значительно меньшей способности к структурообразованию, которое фактически не изменяется при дальнейшем увеличении температуры до $90\,^{\circ}\mathrm{C}$.

Таким образом, установленно, что шликера имеют лучшие литьевые характеристики при температуре $80\,^{\circ}\mathrm{C}$, поэтому дальнейшие исследования проводили при этом значении температуры.

В табл. 1 приведены свойства керамических образцов, полученных разными методами.

Таблица 1 Свойства керамических образцов в зависимости от состава и способа получения

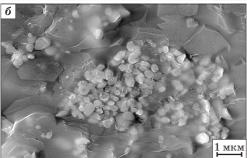

Способ получения	Со- став кера- мики	Свойства керамических образцов			
		Открытая пори- стость, %	Относи- тельная плотность, %	Предел прочности при сжатии, ${ m H/mm^2}$	Термо- стойкость ΔT , °C
Смешение и термо- обработка	1	10—15	85	70—80	400
	2	10—15	85	70—80	400
	3	7—10	≥90	80—90	500
	4	5—10	≥90	80—90	500
Насыщение и термо- обработка	5	5—10	≥90	100	500
	6	1-3	≥95	120	500
	7	1-3	≥95	120	500

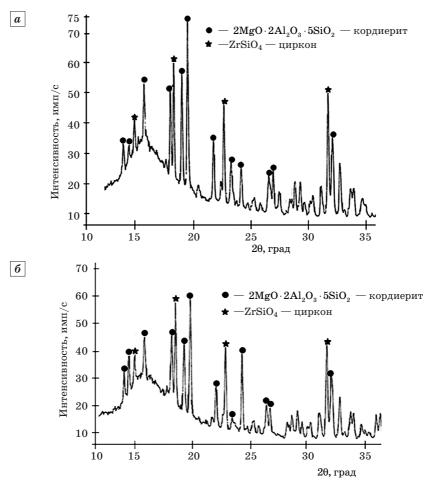
Анализ приведенных в табл. 1 данных свидетельствует о том, что образцы керамики, полученные способом перемешивания и термообработки (состав 1), характеризуются идентичными показателями с образцами, которые были получены таким же способом, но с добавкой 5 % $\rm ZrO_2$ (состав 2). Их открытая пористость составляет 10-15 %, относительная плотность —

85~%, предел прочности при сжатии — $70-80~{\rm H/mm^2}$. Образцы с добавкой $10~{\rm u}~15~\%~{\rm ZrO_2}$ (составы 3,~4), полученные способом перемешивания, имеют также идентичные свойства, которые по своим показателям превышают показатели образцов смеси состава чистого кордиерита. Их открытая пористость составляет 5-10~%, относительная плотность — 90~%, предел прочности при сжатии — $90~{\rm H/mm^2}$.

Образцы керамики, полученные с использованием способа насыщения с дальнейшей термообработкой, характеризуются более высокими показателями свойств в сравнении с образцами, полученными способом смешения. При этом образцы с добавкой $10~u~15~\%~ZrO_2$ (составы 6,~7) имеют наименьшую открытую пористость — 1-3~%, наибольшие показатели относительной плотности, которая составляет $\geq 95~\%$, и наибольший предел прочности при сжатии — $120~\mathrm{H/mm^2}$.

Таким образом, на основании проведенных исследований характеристик керамики показано, что образцы, полученные способом насыщения с дальнейшей термообработкой, имеют более высо-




Рис. 2. Структура керамических образцов, полученных способом насыщения с дальнейшей термообработкой, состав 6 (a), и способом смешивания, состав 3 (б)

кие показатели свойств по сравнению с образцами, полученными способом смешивания.

Поскольку свойства керамики в значительной мере определяются ее структурой, для пояснения полученных результатов были проведены электронномикроскопические исследования.

На рис. 2 показана структура керамических образцов, полученных с применением способа насыщения с дальнейшей термообработкой, состав 6 (рис. 2, *a*), в сравнении с образцами, полученными способом смешивания, состав 3 (рис. 2, *б*).

Как видно из рис. 2, образцы, полученные с применением способа насыщения с дальнейшей термообработкой, характеризуются достаточно плотной и мелкокристаллической структурой, представленной в основном кордиеритовой составляющей и равномерно распределенными зернами циркона, что подтверждает фазовый анализ (рис. 3). Структура образцов, полученных способом смешивания и спеканием оксидов, также представлена в основном кордиеритом, но мелкокристаллический циркон, образовавшийся в структуре, распределен неравномерно.

 $Puc.\ 3.\$ Рентгенограммы образцов, полученных с применением способа насыщения с дальнейшей термообработкой, состав 6 (a), и способом смешивания, состав 3 (σ)

Таким образом, электронномикроскопическое исследование образцов показало, что повышенные значения свойств керамики, полученной с применением способа насыщения с дальнейшей термообработкой, определяются ее плотной и мелкокристаллической структурой, представленной в основном кордиеритовой составляющей и равномерно распределенными зернами циркона, что подтверждает фазовый состав полученных образцов.

Для проведения исследований влияния γ -излучения на свойства образцов были выбраны кордиерит (состав 1) и кордиерит с цирконом (состав 6), полученный с применением способа насыщения с дальнейшей термообработкой.

В табл. 2 приведены показатели свойств керамических образцов до и после γ -облучения. Из таблицы видно, что облучение образцов до дозы $1~\mathrm{M}\Gamma p$ не привело к существенному снижению свойств материалов.

 $\label{eq:Tadhuya} \textit{Tadhuya} \; 2$ Свойства керамических образцов до и после $\, \gamma\text{-облучения}$

	Свойства необлученных /облученных образцов				
Состав образцов	Открытая пори- стость, %	Относитель- ная плот- ность, %	Предел прочности при сжатии, Н/мм ²	Термо- стойкость, Δ <i>T</i> , °C	
Кордиерит	10—15 / 12	≥85 / 85	70—80 / 70	400 / 400	
Кордиерит с цирконом	1-3/3	≥95 / 95	120 / 115	500 / 500	

Заключение

Проведены исследования по получению кордиерито-цирконовой керамики. В результате проведенных исследований влияния разных способов введения в кордиеритовую керамику добавки диоксида циркония на ее свойства показана эффективность введения указанной добавки способом насыщения кордиеритовой смеси оксихлоридом циркония с последующей термообработкой. Образцы, полученные методом литья термопластичных шликеров с последующим высокотемпературным спеканием при температуре $1400\,^{\circ}\mathrm{C}$, характеризуются наибольшими показателями физико-механических свойств.

Исследованиями микроструктуры и фазового состава образцов установлено, что высокие показатели свойств керамики

определяются плотной и мелкокристаллической структурой, представленной в основном кордиеритовой составляющей и равномерно распределенными зернами циркона.

На основании исследований радиационной стойкости разработанной керамики показано, что облучение образцов до дозы 1 МГр не привело к значительному снижению свойств исследуемых материалов, поэтому полученная керамика является перспективной для применения в качестве защитного материала при обращении с РАО.

Библиографический список

- 1. Установление оптимальных параметров процесса электроконсолидации для получения керамик ${\rm HB_2}$ и ${\rm ZrB_2}$ / [Саенко С. Ю., Светличный Е. А., Лобач К. В., Сурков А. Е.] // Зб. наук. пр. ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО». Х. : ПАТ «УКРНДІ ВОГНЕТРИВІВ ІМ. А. С. БЕРЕЖНОГО», 2012. С. 141—146.
- 2. Получение стеклокерамических и керамических материалов для изоляции радиоактивных отходов / С. В. Габелков, Д. С. Логвинков, С. Ю. Саенко [и др.] // ВАНТ. 2003. № 5. С. 172—174. (Серия «Вакуум, чистые материалы, сверхпроводники» (13)).
- $3.\,Py\partial$ ычев Е.В. Моделирование радиационных характеристик композитных керамик для контейнеров хранения радиоактивных отходов / Е.В. Рудычев, С.Ю. Саенко, М. А. Хажмурадов // Ядерна та радіаційна безпека. 2010. Вип. 3. С. 41—47.
- 4. *Аввакумов Е.* Г. Кордиерит перспективный керамический материал / Аввакумов Е. Г., Гусев А. А. Новосибирск : Изд-во СО РАН, 1999. С. 166.
- 5. *Терещенко И. М.* Энерго- и ресурсосберегающая технология получения кордиеритовой керамики / Терещенко И. М., Попов Р. Ю. // Огнеупоры и техн. керамика.— 2007.— № 12.— С. 35—38.
- 6. Oh Y. J. Microstructure and mechanical properties of cordierite ceramics toughened by monoclinic of zirconia / Oh Y. J., Oh T. S., Yang H. J. // Journal of Materials Science. -1991. Vol. 26, N 23. P. 6491—6495.
- 7. Chan K. S., Nicolella D. P., Furman B. R., Wellinghoff S. T., Rawls H. R., Pratsinis S. E. Fracture toughness of zirconia nanoparticle-filled dental composites // Journal of Materials Science. -2009. Vol. 44, Issue 22. P. 6117.
- 8. D 2196-99 Test methods for rheological properties of Non-Newtonian materials by rotational (Brookfield) viscometers. Philadelphia: ASTM Committee D-1, 1999.—P 214—217.
- 9. Седоков Л. М., Мартыненко А. Г., Симоненко Г. А. Радиальное сжатие как метод механических испытаний // Заводская лаборатория. № 1. 1977. Т. 43. С. 98—100.

Рецензент канд. техн. наук Костырко И. Ю.